Skip to main content
Log in

Changes in the δ34S ratio of pore-water sulfate in incubated Sphagnum peat

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Sulfur transformations in freshwater peat were studied using contrasting stable isotope signatures of atmospheric input (high δ34S) and Sphagnum peat substrate (low δ34S). Wet subsurface peat samples from the Lehstenbach watershed, Fichtelgebirge, Germany were incubated anaerobically at 5 and 15°C. Pore-water sulfate was augmented with natural precipitation at the onset of the experiments. Sulfate concentrations and δ34S ratios of residual pore water were measured in 1-day intervals (9 days) and 1-week intervals (7 weeks) at 15°C, and in 1-week intervals (7 weeks) at 5°C. Initially, SO4 2− concentrations decreased (by 50 to 85%) and δ34S ratios increased (by as much as 16‰) at both temperatures due to bacterially-mediated dissimilatory sulfate reduction. At the higher temperature (15°C), the S isotope effect (Δ δ34S) was higher than at the lower temperature (5°C). On day 4 (at 15°C) and day 29 (at 5°C), the δ34S ratio of pore-water sulfate started to decrease by as much as 20‰ The changing S isotope composition provided evidence for a dynamic turnover of the pore-water sulfate pool in anaerobic peat. The observed δ34S pattern could not be explained solely by isotope selectivity of the sulfate-reducing bacteria. Sulfur isotope data indicated a replenishment of the sulfate pool by hydrolysis of ester-sulfate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Alewell, Ch. and M. Gehre. 1999. Patterns of stable S isotopes in a forested catchment as indicators for biological turnover. Biogeochemistry 47:317–331.

    Article  Google Scholar 

  • Alewell, Ch. and A. Giesemann. 1996. Sulfate reduction in a forested catchment as indicated by δ34S values of sulfate in soil solutions and runoff. Isotopes in Environmental and Health Studies 32:203–210.

    Article  CAS  Google Scholar 

  • Altschuler, Z. S., M. M. Schnepfe, C. C. Silber, and F. O. Simon. 1983. Sulfur diagenesis in Everglades peat and origin of pyrite in coal. Science 221:221–227.

    Article  CAS  PubMed  Google Scholar 

  • Bloomfield, C. and J. K. Coulter. 1973. Genesis and management of acid sulphate soils. Advances in Agronomy 25:265–326.

    Article  CAS  Google Scholar 

  • Brown, K. A.. 1985a. Formation of organic sulphur in anaerobic peat. Soil Biology & Biochemistry 18:131–140.

    Article  Google Scholar 

  • Brown, K. A.. 1985b. Sulphur distribution and metabolism in waterlogged peat. Soil Biology & Biochemistry 17:39–45.

    Article  CAS  Google Scholar 

  • Brown, K. A. and J. F. Macqueen. 1985. Sulphate uptake from surface water by peat. Soil Biology & Biochemistry 17:411–420.

    Article  CAS  Google Scholar 

  • Chae, Y. M. and H. R. Krouse. 1986. Alteration of sulfur-34 natural abundance in soil by application of feedlot manure. Soil Science Society of America Journal 50:1425–1431.

    CAS  Google Scholar 

  • Clymo, R. S.. 1984. The limits to peat bog growth. Philosophical Transactions of the Royal Society London, B Biological Sciences 303:605–654.

    Article  Google Scholar 

  • David, M. B., S. C. Schindler, M. J. Mitchell, and J. E. Strick. 1983. Importance of organic and inorganic sulfur to mineralization processes in a forest soil. Soil Biology & Biochemistry 15:671–677.

    Article  CAS  Google Scholar 

  • Faure, G.. 1998. Principles and Applications of Geochemistry. Prentice Hall. Upper Saddle River, NJ, USA.

    Google Scholar 

  • Giblin, A. E. and R. K. Wieder. 1992. Sulphur cycling in marine and freshwater wetlands. p. 85–124. In R. W. Howarth, J. W. B. Stewart, and M. V. Ivanov (eds.) Sulphur Cycling on the Continents. SCOPE 48. John Wiley & Sons, New York, NY, USA.

    Google Scholar 

  • Groscheová, H., M. Novák, M. Havel, and J. Ĉerný. 1998. Effect of altitude and tree species on δ34S of deposited sulfur. Water, Air & Soil Pollution 105:295–303.

    Article  Google Scholar 

  • Harrison, A. G. and H. G. Thode. 1958. Mechanism of the bacterial reduction of sulphate from isotope fractionation studies. Transactions of the Faraday Society 54:84–92.

    Article  CAS  Google Scholar 

  • Houghton, C. and F. A. Rose. 1976. Liberation of sulfate from sulfate esters by soils. Applied and Environmental Microbiology 31: 969–976.

    CAS  PubMed  Google Scholar 

  • Howarth, R. W., J. W. B. Stewart, and M. V. Ivanov. 1992. Sulphur Cycling on the Continents. SCOPE 48. John Wiley & Sons Chichester, UK.

    Google Scholar 

  • Jarvis, B. W., G. E. Lang, and R. K. Wieder. 1987. Arylsulphatase activity in peat exposed to acid precipitation. Soil Biology & Biochemistry 19:107–109.

    Article  CAS  Google Scholar 

  • Kaplan, I. R. and S. C. Rittenberg. 1964. Microbiological fractionation of sulfur isotopes. Journal of General Microbiology 26:127–163.

    Google Scholar 

  • Krouse, H. R. and V. A. Grinenko. 1991. Stable Isotopes. Natural and Anthropogenic Sulpur in the Environment. SCOPE 43. John Wiley & Sons, Chichester, UK.

    Google Scholar 

  • Krouse, R. H., B. Mayer, and J. J. Schoenau. 1996. Applications of stable isotope techniques to soil sulfur cycling. p. 247–284. In T. W. Boutton and S. Yamasaki (eds.) Mass Spectrometry of Soils. Marcel Dekker, New York, NY, USA.

    Google Scholar 

  • Lamers, L. P. M., S. M. E. Van Roozendaal, and J. G. M. Roelofs 1998. Acidification of freshwater wetlands: combined effects of non-airborne sulfur pollution and dessication. Water. Air & Soil Pollution 105:95–106.

    Article  CAS  Google Scholar 

  • Mayer, B., K. H. Feger, A. Giesemann, and H-J Jäger. 1995. Interpretation of sulfur cycling in two catchments in the Black Forest (Germany) using stable sulfur and oxygen isotope data. Biogeochemistry 30:321–58.

    Article  Google Scholar 

  • Maynard, J. B. 1983. Geochemistry of Sedimentary Ore Deposits. Springer, New York, NY, USA.

    Google Scholar 

  • Morgan, M. D.. 1994. Modelling excess sulfur deposition on wetland soils using stable sulfur isotopes. Water, Air & Soil Pollution 79: 299–308.

    Article  Google Scholar 

  • Novák, M., S. H. Bottrell, H. Groscheová, F. Buzek, and J. Černý. 1995. Sulphur isotope characteristics of two North Bohemian forest catchments. Water, Air & Soil Pollution 85:1641–1646.

    Article  Google Scholar 

  • Novák, M., F. Buzek, and M. Adamová. 1999. Vertical trends in δ13C, δ15N and δ34S ratios in bulk Sphagnum peat. Soil Biology & Biochemistry 31:1343–1346.

    Article  Google Scholar 

  • Novák M., J. W. Kirchner, H. Groscheová, M. Havel, J. Černý, R. Krejčí, and F. Buzek. 2000. Sulfur isotope dynamics in two Central European watersheds affected by high atmospheric deposition of SOx. Geochimica et Cosmochimica Acta (in print).

  • Novák, M. and R. K. Wieder. 1992. Inorganic and organic sulfur profiles in nine Sphagnum peat bogs in the United States and Czechoslovakia. Water, Air & Soil Pollution 65:353–369.

    Article  Google Scholar 

  • Novák, M., R. K. Wieder, and W. R. Schell. 1994. Sulfur during early diagenesis in Sphagnum peat: Insights from δ34S ratio profiles in 210Pb-dated peat cores. Limnology and Oceanography 39:1172–1185.

    Article  Google Scholar 

  • Schoenau, J. J. and J. R. Bettany. 1989. 34S natural abundance variations in prairie and boreal forest soils. Journal of Soil Science 40:397–414.

    Article  CAS  Google Scholar 

  • Spratt, H. G. Jr., M. Morgan, and R. E. Good. 1987. Sulfate reduction in peat from a New Jersey Pinelands Cedar swamp. Applied and Environmental Microbiology 53:1406–1411.

    CAS  PubMed  Google Scholar 

  • Stam, A. C., M. J. Mitchell, H. R. Krouse, and J. S. Kahl. 1992. Stable sulfur isotopes of sulfate in precipitation and stream solutions in a northern hardwood watershed. Water Resources Research 28:231–236.

    Article  CAS  Google Scholar 

  • Van Stempvoort, D. R., P. Fritz, and E. J. Reardon. 1992. Sulfate dynamics in upland forest soils, central and southern Ontario, Canada: Stable isotope evidence. Applied Geochemistry 7:159–175.

    Article  Google Scholar 

  • Wieder, R. K. and G. E. Lang. 1988. Cycling of inorganic and organic sulfur in peat from Big Run Bog, West Virginia. Biogeochemistry 5:221–242.

    Article  CAS  Google Scholar 

  • Wieder, R. K. and M. Novák. 1995. Biogeochemical processes during the treatment of acid mine drainage: the Kentucky wetland project. In J. Pašava, B. Kříbek and K. Žák (eds.) Mineral Deposits: from Their Origin to Their Environmental Impact. Balkema, Rotterdam, The Netherlands.

    Google Scholar 

  • Wieder, R. K., J. B. Yavitt, and G. E. Lang. 1990. Methane production and sulfate reduction in two Appalachian peatlands. Biogeochemistry 10:81–104.

    Article  Google Scholar 

  • Yanagisawa, F. and H. Sakai. 1983. Precipitation of SO2 for sulphur isotope ratio measurements by the thermal decomposition of BaSO4 − V2O4 − SiO2 mixtures. Analytical Chemistry 55:985–987.

    Article  CAS  Google Scholar 

  • Zhang, Y., M. J. Mitchell, M. Christ, G. E. Likens, and H. R. Krouse. 1998. Stable sulfur isotopic biogeochemistry of the Hubbard Brook Experimental Forest, New Hampshire. Biogeochemistry 41:259–275.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Groscheová, H., Novák, M. & Alewell, C. Changes in the δ34S ratio of pore-water sulfate in incubated Sphagnum peat. Wetlands 20, 62–69 (2000). https://doi.org/10.1672/0277-5212(2000)020[0062:CITSRO]2.0.CO;2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/0277-5212(2000)020[0062:CITSRO]2.0.CO;2

Key words

Navigation